Energy-efficient deadline scheduling for heterogeneous systems

نویسندگان

  • Yan Ma
  • Bin Gong
  • Ryo Sugihara
  • Rajesh Gupta
چکیده

Energy efficiency is amajor concern inmodern high performance computing (HPC) systems and a poweraware scheduling approach is a promising way to achieve that. While there are a number of studies in power-aware scheduling by means of dynamic power management (DPM) and/or dynamic voltage and frequency scaling (DVFS) techniques, most of them only consider scheduling at a steady state. However, HPC applications like scientific visualization often need deadline constraints to guarantee timely completion. In this paper we present power-aware scheduling algorithms with deadline constraints for heterogeneous systems. We formulate the problem by extending the traditional multiprocessor scheduling and design approximation algorithms with analysis on the worst-case performance. We also present a pricing scheme for tasks in the way that the price of a task varies as its energy usage as well as largely depending on the tightness of its deadline. Last we extend the proposed algorithm to the control dependence graph and the online casewhich ismore realistic. Through the extensive experiments, we demonstrate that the proposed algorithm achieves near-optimal energy efficiency, on average 16.4% better for synthetic workload and 12.9% better for realistic workload than the EDD (Earliest Due Date)based algorithm; The extended online algorithm also outperforms the EDF (Earliest Deadline First)-based algorithmwith an average up to 26% of energy saving and 22% of deadline satisfaction. It is experimentally shown as well that the pricing scheme provides a flexible trade-off between deadline tightness and price. © 2012 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

Power Efficient Scheduling Scheme based on PSO for Real Time Systems

Power efficient design of real-time embedded systems based on multi-processors becomes more important as system functionality is increasingly realized through heuristic approaches. This paper targets energy-efficient scheduling of tasks over multiple processors, where tasks share a common deadline. It addresses the problem of energy-aware static partitioning of periodic real time tasks on heter...

متن کامل

A Multiprocessor System with Non-Preemptive Earliest-Deadline-First Scheduling Policy: A Performability Study

This paper introduces an analytical method for approximating the performability of a firm realtime system modeled by a multi-server queue. The service discipline in the queue is earliestdeadline- first (EDF), which is an optimal scheduling algorithm. Real-time jobs with exponentially distributed relative deadlines arrive according to a Poisson process. All jobs have deadlines until the end of s...

متن کامل

Heterogeneous Energy and Makespan- Constrained DAG Scheduling

Energy-efficient resource allocation within computing systems is important because of the growing demand for, and cost of, energy. In this paper, we study the problem of energy-constrained static resource allocation of a collection of communicating tasks to a heterogeneous computing environment. Our goal is to maximize the probability (calculated via Monte Carlo method) that our collection of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Parallel Distrib. Comput.

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2012